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Abstract: Dirac operator eigenvalues split into two when subjected to two different ex-

ternal vector sources. In a specific finite-volume scaling regime of gauge theories with

fermions, this problem can be mapped to a chiral Random Two-Matrix Theory. We derive

analytical expressions to leading order in the associated finite-volume expansion, showing

how individual Dirac eigenvalue distributions and their correlations equivalently can be

computed directly from the effective chiral Lagrangian in the epsilon-regime. Because of

its equivalence to chiral Random Two-Matrix Theory, we use the latter for all explicit

computations. On the mathematical side, we define and determine gap probabilities and

individual eigenvalue distributions in that theory at finite N , and also derive the relevant

scaling limit as N is taken to infinity. In particular, the gap probability for one Dirac

eigenvalue is given in terms of a new kernel that depends on the external vector source.

This expression may give a new and simple way of determining the pion decay constant Fπ

from lattice gauge theory simulations.
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1. Introduction

One of the most challenging — and perhaps most interesting — problems associated with

lattice gauge theory simulations of QCD is that of the chiral limit. Based on a variety

of different approaches it is now possible to perform numerical simulations of the theory

with two light dynamical quark flavours, at least in modest space-time volumes. By “light”

quarks we mean quarks that are very close to the actual physical masses of the u and d

quarks in QCD. Even if the masses of the physical u and d quarks had turned out to be

much heavier (on the typical QCD scale ΛQCD), one would like to explore the chiral limit

of the theory in it own right. This is because the theory in this limit separates into to two

disjoint regimes, of which the low-energy part can be treated in a systematic manner by

means of effective field theory: the chiral Lagrangian based on the spontaneous breaking of

chiral symmetry. This low-energy theory of QCD with very light quarks can be understood

in much the same way that the low-energy limit of QCD without quarks matches on to an

effective string theory description, and both limits are of interest.

The so-called ǫ-regime of QCD [1] is particularly useful for studying the chiral limit of

QCD in finite volume. It is well known how a universality class of chiral Random Matrix

Theory [2] provides an intriguing alternative description of the leading-order expressions

for Dirac operator eigenvalue correlation functions in this regime, results that also can be

derived directly from the low-energy effective field theory [3, 4]. Even the distributions
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of individual Dirac operator eigenvalues follow from a systematic expansion in the chiral

Lagrangian framework [5]. All of these analytical results depend on just one single low-

energy constant of QCD, that of the infinite-volume chiral condensate Σ. From a lattice

gauge theory viewpoint, this provides a new and unusual way of determining this low-

energy constant of QCD by measuring the lowest-lying Dirac operator eigenvalues. For

some numerical analyses see, e.g., refs. [6, 7].

Recently, a new scheme was proposed which uses Dirac operator eigenvalues for deter-

mining the pion decay constant Fπ in a somewhat similar manner [8]. Based on the chiral

Lagrangian formulation, the suggested method made use of a spectral 2-point function

associated with two different Dirac operators,

D1ψ
(n)
1 ≡ [ /D(A) + iµ1γ0]ψ

(n)
1 = iλ

(n)
1 ψ

(n)
1 ,

D2ψ
(n)
2 ≡ [ /D(A) + iµ2γ0]ψ

(n)
2 = iλ

(n)
2 ψ

(n)
2 , (1.1)

corresponding, in the case µ ≡ µ1 = −µ2, to imaginary isospin chemical potential. Equiv-

alently, the two Dirac operators (1.1) are simply in a constant background Abelian gauge

field, but with different “charges”. In the ǫ-regime, the chemical potential µ couples di-

rectly to Fπ in the form of the finite-volume scaling variable µ̂ = µFπ

√
V . Because the

sensitivity to µ is quite drastic for the spectral 2-point function, this provides a clean

method for extracting Fπ. There is sensitivity to the parameter µ̂ (and hence Fπ) also

in other observables in the ǫ-regime [9, 10]. Alternatively, one may use a real chemical

potential to determine Fπ [11], with the same finite-volume scaling. The Dirac spectrum

is complex in that case.

The chiral Lagrangian approach of ref. [8] can, to leading order in the ǫ-regime, also be

re-cast in terms of Random Matrix Theory, this time a Random Two-Matrix Theory [12].

All eigenvalue density correlations are equivalent in the two theories [8, 4]. One loop

corrections to both Σ [1] and Fπ [13] have been computed in the ǫ-expansion. To that

order they simply amount to finite-volume corrections to the infinite-volume quantities Σ

and Fπ; the effective theory otherwise remains unchanged. It is of course important to

know the size of these finite-size corrections if one wishes to determine Σ and Fπ from the

eigenvalues of the Dirac operator by means of lattice gauge theory simulations at finite

volume. An alternative method for extracting Σ and Fπ in the ǫ-regime of QCD can be

based on fits to vector and axial vector two-point correlations functions; also here finite-

volume corrections are known analytically at sectors of fixed gauge field topology [14]. See

the recent review [15] for a summary of these different approaches.

In the Random Matrix Theory formulation analytical computations are substantially

simplified, and in ref. [12] all possible spectral density correlation functions associated with

the two Dirac operators were found analytically. This includes all spectral functions in both

the quenched and unquenched theory, and even all spectral correlation functions associated

with “partially quenched” spectral correlation functions, where there is no back-reaction

of the chemical potential on the gauge field configurations. This latter set of spectral

correlation functions give the most fruitful way of extracting Fπ from lattice data since

one can make use of ordinary configurations without chemical potential. Once all spectral

correlation functions are known, one should in principle have all spectral data, and thus be
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able to reconstruct individual eigenvalue distributions as well. Indeed, this was precisely

what was found in ref. [5] for the case without imaginary chemical potential. In the first

part of this paper we show that this is also the case here.1 It was also shown in [18] that

in the quenched theory in the limit of large chemical potential all spectral and individual

eigenvalue correlations factorise into quenched one-matrix theory quantities.

In the second part of this paper we aim at determining in as closed form as possible

the precise analytical expressions for individual eigenvalues distributions. Such expressions

may turn out to be very useful alternatives for extracting Fπ from lattice simulations in

those cases where only a very small number of “good” eigenvalues are available, and where

it therefore may be difficult to construct the spectral 2-point correlation function with good

statistics. Here we concentrate on the smallest eigenvalue, but provide the general frame-

work for computing others. Based on the Random Two-Matrix Theory representation, we

derive an explicit and quite compact representation for any finite N . Taking the scaling

limit with N → ∞, this provides the sought-for analytical expression for the lowest Dirac

operator eigenvalue distribution in the appropriate finite-volume scaling regime. Remark-

ably, the final expression is not much more involved than the one without external vector

sources.

From the point of view of mathematical physics, the resulting solution for the distri-

bution of the smallest eigenvalue in the chiral Random Two-Matrix Theory is of interest

in its own right. The solution cannot be mapped on to an analogous one-matrix theory,

so the distribution is new and presumably corresponds to a new universality class that is

parametrised by one real number δ̂. For this reason we include a rather detailed derivation,

even though the resulting formula is all that is needed for the purpose of applications to

lattice gauge theory simulations.

2. Eigenvalue correlations in chiral random two-matrix theory

We start by giving the theory we will solve for individual eigenvalue correlations, chiral

perturbation theory in the epsilon regime with imaginary chemical potential

Z(Nf )
ν =

∫

U(Nf )
dU (detU)νe

1

4
V F 2

πTr[U,B][U†,B]+ 1

2
ΣV Tr(M†U+MU†) . (2.1)

Here the matrix B =diag(µ11N1
, µ21N2

) contains the two different chemical potentials, and

M = diag(m1, . . . ,mNf
) is the quark mass matrix of the N1 +N2 = Nf flavours.

This theory and all its spectral density correlation functions are completely equivalent

to the chiral Two-Matrix Theory with imaginary chemical potential that was introduced in

ref. [12]. The equivalence for the two-point function follows from [8], for all higher density

correlations it was proven in [4]. It is defined as

Z(Nf )
ν ∼

∫

dΦdΨ e−NTr(Φ†Φ+Ψ†Ψ)
N1
∏

f1=1

det[D1 +mf1]

N2
∏

f2=1

det[D2 +mf2] , (2.2)

1A preliminary account of this was presented at a conference last year [16]. A comparison with Monte

Carlo data from lattice gauge theory was presented at the same meeting [17].
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where Df is given by

Df =

(

0 iΦ + iµfΨ

iΦ† + iµfΨ† 0

)

, f = 1, 2 . (2.3)

The operator remains anti-Hermitian because the chemical potentials are imaginary. Both

Φ and Ψ are complex rectangular matrices of size N × (N + ν), where both N and ν are

integers. The index ν corresponds to gauge field topology in the usual way.

Referring to ref. [12] for details, we immediately write down the corresponding eigen-

value representation:

Z(Nf )
ν =

∫ ∞

0

N
∏

i=1



dxidyi(xiyi)
ν+1

N1
∏

f1=1

(x2
i +m2

f1)

N2
∏

f2=1

(y2
i +m2

f2)





×∆N({x2})∆N ({y2}) det [Iν(2dNxiyj)] e
−N

PN
i c1x2

i +c2y2
i , (2.4)

up to an irrelevant normalisation factor. Here the xi’s and yi’s are the real and non-negative

entries in the diagonal matrices X and Y , defined by

Φ1 ≡ Φ + µ1Ψ = U1XV
†
1 ,

Φ2 ≡ Φ + µ2Ψ = U2Y V
†
2 . (2.5)

Because of this redefinition the matrices Φi become coupled in the exponent, leading to

the above structure after integration of the unitary matrices Ui and Vi. This leads to the

following combinations of the two chemical potentials in eq. (2.4):

c1 = (1 + µ2
2)/δ

2, c2 = (1 + µ2
1)/δ

2 ,

d = (1 + µ1µ2)/δ
2, 1 − τ = d2/(c1c2) ,

δ = µ2 − µ1 , (2.6)

where the latter will become useful in section 4.

The joint probability distribution function which is proportional to the integrand in

eq. (2.4) is defined as

P(Nf )
ν ({x}, {y}; {m1}, {m2})=

1

Z(Nf )
ν

N
∏

i=1



(xiyi)
ν+1

N1
∏

f1=1

(x2
i +m2

f1)

N2
∏

f2=1

(y2
i +m2

f2)



(2.7)

×∆N ({x2})∆N ({y2}) det [Iν(2dNxiyj)] e
−N

PN
i c1x2

i +c2y2
i ,

where ∆N ({x2}) =
∏N

j>i(x
2
j − x2

i ) is the Vandermonde determinant. It is normalised to

unity

1 =

∫ ∞

0

N
∏

i=1

dxidyi P(Nf )
ν ({x}, {y}; {m1}, {m2}) . (2.8)

– 4 –



J
H
E
P
0
3
(
2
0
0
8
)
0
7
3

From the joint probability distribution we can define an (n, k)-density correlation function

Rk,l({x}k, {y}l) ≡ N !2

(N − k)!(N − l)!

∫ ∞

0

N
∏

i=k+1

dxi

N
∏

j=l+1

dyj P(Nf )
ν ({x}, {y}; {m1}, {m2})

=
N !2

(N − k)!(N − l)!

1

Z(Nf )
ν

(2.9)

×
∫ ∞

0

N
∏

i=k+1

dxi

N
∏

j=l+1

dyj det
[

w
(Nf )
ν (xi, yj)

]

∆N ({x2})∆N ({y2}),

where we have moved the exponential and masses into the determinant, introducing

w
(Nf )
ν (xi, yj) ≡ (xiyj)

ν+1 e−N(c1x2
i +c2y2

j )Iν(2dNxiyj)

N1
∏

f1=1

(x2
i +m2

f1)

N2
∏

f2=1

(y2
j +m2

f2) .

(2.10)

Obviously R0,0 = 1 is normalised to unity. The Rk,l({x}k, {y}l) can be expressed in terms

of a determinant of four different kernels. These are given by the (bi-)orthogonal polyno-

mials and their integral transforms with respect to the weight function eq. (2.10), and we

refer to [12] for details. The Rk,l({x}k, {y}l) will be the building blocks to compute the gap

probabilities as well as the distributions of individual eigenvalues of both type x and y.

We define the following gap probabilities as

Ek,l(s, t)≡
N !2

(N−k)!(N−l!)

∫ s

0
dx1 . . . dxk

∫ ∞

s
dxk+1 . . . dxN

∫ t

0
dy1 . . . dyl

∫ ∞

t
dyl+1 . . . dyN

× P(Nf )
ν ({x}, {y}; {m1}, {m2}) , for k, l = 0, 1, . . . , N , (2.11)

where in the sequel we suppress the dependence on masses and topology for simplicity.

The Ek,l(s, t) give the probability for general k, l ∈ {0, . . . , N} that the interval [0, s] is

occupied by k x-eigenvalues of D1 and [s,∞) is occupied by (N − k) x-eigenvalues, and

that the interval [0, t] is occupied by l y-eigenvalues of D2 and [t,∞) is occupied by (N − l)
y-eigenvalues. It also depends on the masses and on µ1,2 which we have suppressed here.

Similarly we can define the probability to find the k-th x-eigenvalue at value xk = s,

and the l-th y-eigenvalue at value yl = t, to be

pk,l(s, t)≡k
(

N

k

)

l

(

N

l

)∫ s

0
dx1 . . . dxk−1

∫ ∞

s
dxk+1 . . . dxN

∫ t

0
dy1 . . . dyl−1

∫ ∞

t
dyl+1 . . . dyN

×P(Nf )
ν (x1, . . . , xk−1, xk =s, xk+1, . . . , xN , y1, . . . , yl−1, yl = t, yl+1, . . . , yN ;{m1},{m2}).

(2.12)

Here the eigenvalues are ordered, x1 ≤ . . . ≤ xN and y1 ≤ . . . ≤ yN , and obviously k, l ≥ 1.

The fact that the pk,l(s, t) are probabilities that are normalised as

∫ ∞

0
ds

∫ ∞

0
dt pk,l(s, t) = 1 , (2.13)
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can be seen along the same lines as for a single set of Dirac operator eigenvalues, as was

shown in the appendix of [5].

Because we have two sets of eigenvalues we may also define mixed gap-probability

distributions as they will occur in intermediate steps. There are two different functions

defined as

Epk,l(s, t)≡
N !

(N−k)! l
(

N

l

)
∫ s

0
dx1 . . . dxk

∫ ∞

s
dxk+1 . . . dxN

∫ t

0
dy1 . . . dyl−1

∫ ∞

t
dyl+1 . . . dyN

× P(Nf )
ν ({x}, y1, . . . , yl−1, yl = t, yl+1, . . . , yN ; {m1}, {m2}) ,

for k = 0, . . . , N and l = 1, . . . , N , (2.14)

pEk,l(s, t)≡ k

(

N

k

)

N !

(N−l!)

∫ s

0
dx1 . . . dxk−1

∫ ∞

s
dxk+1 . . . dxN

∫ t

0
dy1 . . . dyl

∫ ∞

t
dyl+1 . . . dyN

× P(Nf )
ν (x1, . . . , xk−1, xk = s, xk+1, . . . , xN , {y}; {m1}, {m2}) ,

for k = 1, . . . , N and l = 0, . . . , N . (2.15)

The first quantity eq. (2.14) gives the probability that [0, s] is occupied by k of the x-

eigenvalues of D1 and [s,∞) is occupied by (N − k) of the x-eigenvalues, given that yl = t,

where the y-eigenvalues are ordered. The second quantity eq. (2.15) gives the probability

that [0, t] is occupied by l of the y-eigenvalues of D2 and [t,∞) is occupied by (N − l) of

the y-eigenvalues, given that xk = s, where again the x-eigenvalues are ordered.

These definitions include for example the probability pEk,0(s, t = 0) to find an eigen-

value of the first type at x = s, where all y-eigenvalues are integrated out. We will return

to this in section 4.

3. Gap probabilities and individual eigenvalues from densities

We use the simple identity

(a− b)j =

j
∑

l=0

(−1)l
(

j

l

)

aj−lbl , (3.1)

and choose a =
∫∞

0 dx and b =
∫ s
0 dx to replace all the (N − k) dx-integrals

∫∞

s dx in

eq. (2.11) by a− b, and likewise for the corresponding y-integrations. We obtain

Ek,l(s, t) =
N !2

(N − k)!(N − l)!

∫ s

0
dx1 . . . dxk

∫ t

0
dy1 . . . dyl (3.2)

×
N−k
∑

i=0

(−1)i
(

N − k

i

)(∫ ∞

0

)N−k−i(∫ s

0

)i

dxk+1 . . . dxN

×
N−l
∑

j=0

(−1)j
(

N − l

j

)(
∫ ∞

0

)

N−l−j

(
∫ t

0

)j

dyl+1 . . . dyNP(Nf )
ν ({x}, {y}; {m1}, {m2})

=

N−k
∑

i=0

N−l
∑

j=0

(−1)i+j

i!j!

∫ s

0
dx1 . . . dxk+i

∫ t

0
dy1 . . . dyl+jRk+i,l+j(x1, . . . , xk+i, y1, . . . , yl+j).
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Here we have used the invariance of the joint probability distribution under permutations

of both {x} and {y}. The formula (3.2) neatly expresses the gap probability in terms of

spectral correlation functions of both sets of eigenvalues. The latter can be derived from

k-point resolvents in chiral perturbation theory by enlarging eq. (2.1) to the corresponding

supergroup integral, see [4]. Thus we have shown how in this setting also gap probabilities

and individual eigenvalue distributions follow at the level of the chiral Lagrangian.

We may introduce a generating functional for all gap probabilities,

E(s, t; ξ, η) ≡
N
∑

i,j=0

(−ξ)i(−η)j 1

i!j!

∫ s

0
dx1 . . . dxi

∫ t

0
dx1 . . . dxj Ri,j(x1, . . . , xi, y1, . . . , yj) ,

(3.3)

where the term at i = j = 0 gives unity. It immediately follows that

Ek,l(s, t) = (−1)k+l ∂k

∂ξk

∂l

∂ηl
E(s, t; ξ, η)

∣

∣

∣

∣

ξ=1,η=1

, for k, l = 0, 1, . . . , N . (3.4)

We will now relate gap probabilities, mixed and individual eigenvalue distributions to

density correlations. It can be easily shown that

∂

∂s
Ek,l(s, t) = k! (pEk,l(s, t) − pEk+1,l(s, t)) . (3.5)

For k = l = 0 we have
∂

∂s
E0,0(s, t) = −pE1,0(s, t) , (3.6)

as from the definition pEk,l has k ≥ 1, and thus we set pE0,l(s, t) ≡ 0. Similarly it follows

∂

∂t
Ek,l(s, t) = l! (Epk,l(s, t) −Epk,l+1(s, t)) , (3.7)

where again Epk,0(s, t) ≡ 0. If we differentiate the mixed correlators we obtain

∂

∂s
Epk,l(s, t) = k! (pk,l(s, t) − pk+1,l(s, t)) , (3.8)

∂

∂t
pEk,l(s, t) = l! (pk,l(s, t) − pk,l+1(s, t)) . (3.9)

Finally, if we differentiate the gap probabilities twice we arrive at

∂2

∂s∂t
Ek,l(s, t) = k! l! (pk,l(s, t) − pk+1,l(s, t) − pk,l+1(s, t) + pk+1,l+1(s, t)) . (3.10)

Of course the order of differentiation does not matter, as one can easily convince oneself.

The boundary conditions to be imposed here and in eqs. (3.8) and (3.9) follow from

∂2

∂s∂t
Ek,0(s, t) = − k! (pk,1(s, t) − pk+1,1(s, t)) ,

∂2

∂s∂t
E0,l(s, t) = − l! (p1,l(s, t) − p1,l+1(s, t)) . (3.11)

Again from the definitions we have pk,0(s, t) = p0,l(s, t) ≡ 0.
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The probabilities pk,l(s, t) can be solved for the (mixed) gap probabilities in three

different ways. Summing over k in eq. (3.8), or over l in eq. (3.9) we obtain

pn+1,l(s, t) = −
n
∑

k=0

1

k!

∂

∂s
Epk,l(s, t) ,

pk,n+1(s, t) = −
n
∑

l=0

1

l!

∂

∂t
pEk,l(s, t) . (3.12)

Alternatively one can sum over both k and l in eq. (3.10) to obtain an expression in terms

of gap probabilities alone

pn+1,q+1(s, t) = +

n
∑

k=0

q
∑

l=0

1

k! l!

∂2

∂s∂t
Ek,l(s, t) . (3.13)

Let us give some examples. For the simplest case of k = l = 0 we get the probability

that the interval [0, s] is free of x-, and the interval [0, t] free of y-eigenvalues:

E0,0(s, t) =

∫ ∞

s

N
∏

i=1

dxi

∫ ∞

t

N
∏

j=1

dyj P(Nf )
ν ({x}, {y}; {m1}, {m2}) , (3.14)

and we obtain
∂2

∂s∂t
E0,0(s, t) = p1,1(s, t) . (3.15)

Explicitly we have for this gap probability the expansion eq. (3.2) given already in [16]

E0,0(s, t) = 1 −
∫ s

0
dxR1,0(x) −

∫ t

0
dy R0,1(y) +

1

2

∫ s

0
dx1dx2R2,0(x1, x2)

+
1

2

∫ t

0
dy1dy2R0,2(y1, y2) + . . .

+

∫ s

0
dx

∫ t

0
dyR1,1(x, y) −

1

2

∫ s

0
dx1dx2

∫ t

0
dy R2,1(x1, x2, y)

−1

2

∫ s

0
dx

∫ t

0
dy1dy2R1,2(x, y1, y2) + . . . . (3.16)

The terms in the first two lines containing only s- or t-dependent integrals are annihilated

by the differentiation in eq. (3.15), and we get to the same order

p1,1(s, t) = R1,1(s, t) −
∫ s

0
dxR2,1(x, s, t) −

∫ t

0
dy R1,2(s, t, y) + . . . . (3.17)

4. An exact expression for the first eigenvalue distribution

In this section we derive a closed expression for an individual eigenvalue distribution, the

probability to find the first eigenvalue of D1 at s irrespective of the position of the D2-

eigenvalues. Our solution given in terms of a new kernel and polynomials holds for any

number of flavours N1 and N2 and arbitrary chemical potentials µ1 and µ2. In particular,

we can partially quench the type-1 flavours (putting N1 = 0) with µ1 6= 0 in gauge theory

with type-2 physical sea-quark flavours (i.e.,N2 6= 0) with µ2 = 0. This case is probably

the most interesting for applications to lattice QCD.
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4.1 The finite-N solution

We first consider the gap probability that the interval [0, s] is empty of x-eigenvalues,

E0,0(s, t = 0) =

∫ ∞

s
dx1 . . . dxN

∫ ∞

0
dy1 . . . dyN P(Nf )

ν ({x}, {y}; {m1}, {m2}) . (4.1)

From this the sought probability follows by differentiation, pE1,0(s, t = 0) = −∂sE0,0(s, t =

0). We will now perform a series of steps before arriving at an exact expression for finite

N . The appropriate large-N scaling limit will be taken in the next subsection.

First, recalling the definition of the joint probability distribution eq. (2.7) we can use

the fact that all y-eigenvalues are integrated out in eq. (4.1) for a symmetry argument.

The Vandermonde determinant ∆N ({y2}) and the determinant of the Bessel function are

antisymmetric. Therefore we can replace the latter by its diagonal part times N !

E0,0(s, 0) =
N !

Z(Nf )
ν

∫ ∞

s
dx1 . . . dxN

∫ ∞

0
dy1 . . . dyN∆N ({x2})∆N ({y2}) (4.2)

×
N
∏

i=1



(xiyi)
ν+1 e−N(c1x2

i +c2y2
i )Iν(2dNxiyi)

N1
∏

f1=1

(x2
i +m2

f1)

N2
∏

f2=1

(y2
i +m2

f2)



.

In the next step we use a known identity relating the Laguerre weight times the I-Bessel

function to an infinite sum over Laguerre polynomials (see e.g. eq. (B.7) in [12]). With

this decomposition we can exploit the orthogonality properties of these polynomials. For

simplicity of the proof we will first consider N1 = N2 = 1 (Nf = 2) with masses m1 and

m2, and later give the general result for any numbers of flavours. We thus have

E0,0(s, 0)=
N !

Z(1+1)
ν

∫ ∞

s
dx1 . . . dxN

∫ ∞

0
dy1 . . . dyN∆N ({x2})∆N ({y2})

N
∏

i=1

(x2
i +m2

1)(y
2
i +m2

2)

×
N
∏

i=1

(

(Nd)ντν+1(xiyi)
2ν+1e−Nτ(c1x2

i +c2y2
i )

∞
∑

ni=0

ni!(1−τ)ni

(ni+ν)!
Lν

ni
(Nτc1x

2
i )L

ν
ni

(Nτc2y
2
i )

)

,

(4.3)

with τ = 1 − d2/(c1c2). Next we include the mass m2 into the Vandermonde determinant

∆N ({y2}), and then replace it by a determinant of Laguerre polynomials normalised to be

monic

∆N ({y2})
N
∏

i=1

(y2
i +m2

2) = ∆N+1((im2)
2, {y2}) = det

j,k=0,...,N

[

(−)jj!(Nτc2)
−jLν

j (Nτc2y
2
k)
]

,

(4.4)

where y0 ≡ im2. We observe that the Laguerre polynomials Lν
j (Nτc2yk) now all appear

with their corresponding weight function y2ν+1
i e−Nτc2y2

i , except for y0 of course.2 Writing

the determinant eq. (4.4) as a sum over permutations we can integrate out all variables y1

2Note the additional τ in the exponent comparing eq. (4.2) and (4.3), coming from the identity for the

I-Bessel function.
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to yN successively, each integral killing one infinite sum over ni. Thus, under the permuta-

tion each L
(ν)
ni (Nτc2y

2
i ) gets replaced by L

(ν)
ni (Nτc1x

2
i ) times the norm from the integration

and the remaining factor from inside the sum. We can therefore rewrite the result again

as a determinant, with the first row containing the mass y0 = im2 unchanged:

E0,0(s, 0)=
N !

Z(1+1)
ν

(Nd)NντN(ν+1)

∫ ∞

s
dx1 . . . dxN∆N ({x2})

N
∏

i=1

(x2
i +m2

1) x
2ν+1
i e−Nτc1x2

i

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lν
0(Nτc2(im2)

2) · · · (−)jj!
(Nτc2)jL

ν
j (Nτc2(im2)

2) · · · (−)N N !
(Nτc2)N L

ν
N (Nτc2(im2)

2)

1
2(Nτc2)ν+1L

ν
0(Nτc1x

2
1) · · · (−)jj!(1−τ)j

2(Nτc2)j+ν+1L
(ν)
j (Nτc1x

2
1) · · · (−)N N !(1−τ)N

2(Nτc2)N+ν+1 L
(ν)
N (Nτc1x

2
1)

· · · · · · · · · · · · · · ·
1

2(Nτc2)ν+1L
ν
0(Nτc1x

2
N ) · · · (−)jj!(1−τ)j

2(Nτc2)j+ν+1L
(ν)
j (Nτc1x

2
N ) · · · (−)N N !(1−τ)N

2(Nτc2)N+ν+1 L
(ν)
N (Nτc1x

2
N )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
N !(Nd)NντN(ν+1)

∏N
j=0(1−τ)j(Nτc2)−j

Z(1+1)
ν 2N (Nτc2)N(ν+1)

∫ ∞

s
dx1 . . . dxN∆N ({x2})

N
∏

i=1

(x2
i+m

2
1)x

2ν+1
i e−Nτc1x2

i

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂ν
0(Nτc2(im2)

2) · · · (1 − τ)−jL̂ν
j (Nτc2(im2)

2) · · · (1 − τ)−N L̂ν
N (Nτc2(im2)

2)

L̂ν
0(Nτc1x

2
1) · · · L̂ν

j (Nτc1x
2
1) · · · L̂ν

N (Nτc1x
2
1)

· · · · · · · · · · · · · · ·
L̂ν

0(Nτc1x
2
N ) · · · L̂ν

j (Nτc1x
2
N ) · · · L̂ν

N (Nτc1x
2
N )

∣

∣

∣

∣

∣

∣

∣

∣

∣

,(4.5)

taking out common factors. Here we have defined the following notation for monic Laguerre

polynomials

L̂ν
n(x) ≡ (−1)nn! Lν

n(x) =

n
∑

j=0

(−1)n+j n!(n+ ν)!

(n− j)!(ν + j)!j!
xj . (4.6)

The last determinant in eq. (4.5) can be almost mapped to a Vandermonde determinant,

using the following identity:

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂ν
0(M2

2 ) · · · 1
(1−τ)j L̂

ν
j (M

2
2 ) · · · 1

(1−τ)N L̂
ν
N (M2

2 )

L̂ν
0(X

2
1 ) · · · L̂ν

j (X
2
1 ) · · · L̂ν

N (X2
1 )

· · · · · · · · · · · · · · ·
L̂ν

0(X
2
N ) · · · L̂ν

j (X
2
N ) · · · L̂ν

N (X2
N )

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂ν
0(

M2
2

τ ) · · · τ j

(1−τ)j L̂
ν
j (

M2
2

τ ) · · · τN

(1−τ)N L̂
ν
N (

M2
2

τ )

1 · · · X2j
1 · · · X2N

1

· · · · · · · · · · · · · · ·
1 · · · X2j

N · · · X2N
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (4.7)

where we have defined

M2
2 ≡ Nτc2(im2)

2 and X2
k ≡ Nτc1x

2
k . (4.8)

A proof of this relation is given in appendix A.
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We can now change variables xj → uj = x2
j , and perform the shift uj → zj = uj − s2

to obtain integrations
∫∞

0 dzj in eq. (4.5). The change of variables and subsequent shifts

induce the following changes:

∆N ({u}) → ∆N ({z}) ,
(uj +m2

1) → (zj + s2 +m2
1) ≡ (zj +m′ 2

1 ) ,

uν
j → (zj + s2)ν ,

e−Nτc1ui → e−Nτc1zie−Nτc1s2

. (4.9)

In other words: the Vandermonde determinant remains invariant, the mass m1 receives a

shift to m′ 2
1 = s2 + m2

1, the topology term becomes a ν-fold degenerate mass term with

mass s2, and the weight is shifted by a constant factor. While this is just as in the chiral

one-matrix theory, the difference here is that the almost Vandermonde eq. (4.7) is not

invariant, and becomes

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂ν
0(

M2
2

τ ) · · · τj

(1−τ)j L̂
ν
j (

M2
2

τ ) · · · τN

(1−τ)N L̂
ν
N (

M2
2

τ )

1 · · · X2j
1 · · · X2N

1

· · · · · · · · · · · · · · ·
1 · · · X2j

N · · · X2N
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (4.10)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂ν
0(

M2
2

τ ) · · · τ j

(1−τ)j L̂
ν
j (

M2
2

τ ) · · · τN

(1−τ)N L̂
ν
N (

M2
2

τ )

1 · · · (Nτc1(z1 + s2))j · · · (Nτc1(z1 + s2))N

· · · · · · · · · · · · · · ·
1 · · · (Nτc1(zN + s2))j · · · (Nτc1(zN + s2))N

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂ν
0(

M2
2

τ ) · · · ∑j
l=0

τ l

(1−τ)l L̂
ν
l (

M2
2

τ )(−S2)j−l
(

j
l

)

· · · ∑N
l=0

τ l

(1−τ)l L̂
ν
l (

M2
2

τ )(−S2)N−l
(

N
l

)

1 · · · Zj
1 · · · ZN

1

· · · · · · · · · · · · · · ·
1 · · · Zj

N · · · ZN
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where we have defined

S2 ≡ Nτc1s
2 and Zk ≡ Nτc1zk . (4.11)

Here we have subsequently added columns3 to turn back to monic powers in Zk. The fact

that it is not quite invariant illustrates the fundamental property that there is apparently

no way to map the present two-matrix problem onto an equivalent one-matrix problem.

In the next step we turn the monic powers Zj
i back into monic Laguerre polynomials,

using again the invariance of the determinant. This will introduce yet another sum over

the Laguerre polynomials in the mass variable M2
2 in the first row. Because of the shift

eq. (4.9) we only need to generate Laguerre polynomials with topology ν = 0, L̂ν=0
j ≡ L̂j,

to obtain the polynomials orthogonal to the shifted weight. We thus obtain for the last

3Usually one goes from monic powers to monic polynomials in this step. It is easy to invert this by

defining Z
′
i ≡ Zi + S

2 and then going from monic powers Z
′ j
i to polynomials (Z′

i − S
2)j = Z

j
i .
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determinant in eq. (4.10)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q0(M
2
2 ) · · · Qj(M

2
2 ) · · · QN (M2

2 )

L̂0(Z1) · · · L̂j(Z1) · · · L̂N (Z1)

· · · · · · · · · · · · · · ·
L̂0(ZN ) · · · L̂j(ZN ) · · · L̂N (ZN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (4.12)

which defines new polynomials

Qn(M2
2 ) ≡

n
∑

j=0

(−)n+j(n!)2

(n− j)!(j!)2

j
∑

l=0

τ l

(1 − τ)l
L̂l

(

M2
2

τ

)

(−S2)j−l

(

j

l

)

= (−)nn!

n
∑

l=0

τ l

(1 − τ)l
Ll

(

M2
2

τ

)

Ll
n−l(−S2)

= (−)nn!
n
∑

l=0

Ll
n−l(−S2)

l
∑

k=0

(−)k+ll!

(l − k)!k!(1 − τ)k
Lk(M

2
2 )

= (−)nn!

n
∑

k=0

1

(1 − τ)k
Lk(M

2
2 )L−1

n−k(−S2) . (4.13)

In the first step we have swapped sums,
∑n

j=0

∑j
l=0 →

∑n
l=0

∑n
j=l, such that the powers

in S2 give the Laguerre polynomial Ll
n−l(−S2). In the second step we have used the

identity (A.8) backwards in order to take the argument 1/τ out of the first Laguerre

polynomial, in choosing z = M2
2 and w = 1/τ in eq. (A.8). This goes at the expense of

introducing another sum. After swapping again sums to
∑n

k=0

∑n
l=k, the latter sum over

the generalised Laguerre polynomial in −S2 can be simplified, using the following identity,

L−1
n−k(−S2) =

n−k
∑

j=0

(−)j
(

j + k

k

)

Lj+k
n−k−j(−S2) . (4.14)

A proof of this simple identity is presented in the appendix B. Note that all polynomials

L−1
n−k(−S2) are proportional to −S2, except for n = k as L−1

0 (−S2) = 1. This will become

important when computing the normalisation in the limit s→ 0.

The explicit appearance of a new set of polynomials is again a reminder that we cannot

map the problem onto a one-matrix problem. Of course, in the limit of the deformation

parameters µ1,2 → 0, the polynomials Qn(M2
2 ) reduce to Laguerre polynomials. In the form

given in the last line of eq. (4.13) the new polynomials Qn are amenable to the large-N

scaling limit that we take in the next subsection.

Returning to the gap probability, in the last step we now replace in eq. (4.5) the deter-

minant ∆N ({x2}) = ∆N ({z}) times the mass term by a larger Vandermonde determinant,

and then replace monic powers by Laguerre polynomials monic in the arguments zk. The ν

degenerate masses obtained after the shift eq. (4.9) can be dealt with by first taking them

different, and then taking limits by multiple application of l’Hôpital’s rule. For simplicity
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we set ν = 0 in all of the following. We have

∆N ({z})
N
∏

i=1

(zi +m′ 2
1 ) = ∆N+1((im

′
1)

2, {z}) = det
j,k=0,...,N

[

(−)jj!(Nτc1)
−jLj(Nτc1zk)

]

,

(4.15)

where we define z0 = im′
1.

Let us collect what we have derived so far:

E0,0(s, 0)=
N !
∏N

j=0(1 − τ)j(Nτc2)
−j(Nτc1)

−j

Z(1+1)
0 22N (Nc2)N

e−N2τc1s2

∫ ∞

0
dz1 . . . dzN e−N

PN
i=0

τc1zi

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂0(M
′ 2
1 ) · · · L̂j(M

′ 2
1 ) · · · L̂N (M ′ 2

1 )

L̂0(Z1) · · · L̂j(Z1) · · · L̂N (Z1)

· · · · · · · · · · · · · · ·
L̂0(ZN ) · · · L̂j(ZN ) · · · L̂N (ZN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q0(M
2
2 ) · · · Qj(M

2
2 ) · · · QN (M2

2 )

L̂0(Z1) · · · L̂j(Z1) · · · L̂N (Z1)

· · · · · · · · · · · · · · ·
L̂0(ZN ) · · · L̂j(ZN ) · · · L̂N (ZN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(4.16)

Here the definition

M ′ 2
1 ≡ Nτc1(im

′
1)

2 = −Nτc1(m2
1 + s2) (4.17)

has been used. We can now apply the orthogonality of the Laguerre polynomials with re-

spect to the weight e−Nτc1zi to compute theN -fold integral over the determinants, applying

the standard Dyson Theorem. We thus obtain the final answer for finite N :

E0,0(s, 0) = C e−N2τc1s2

KN+1(M
′ 2
1 ,M2

2 ) ,

KN+1(M
′ 2
1 ,M2

2 ) ≡
N
∑

j=0

(−)j

j!
Lj(M

′ 2
1 )Qj(M

2
2 ) . (4.18)

This result defines a new kernel of the polynomials Lj and Qj in the (shifted) masses. The

constant C ≡ 1/
∑N

j=0
1

(1−τ)jLj(M
2
1 )Lj(M

2
2 ) that is inversely proportional to the partition

function Z(1+1)
0 ensures the correct normalisation lims→0E0,0(s, 0) = 1. It can be obtained

independently by computing the partition function

Z(1+1)
0 =

N !2
∏N

j=0(j!)
2(1 − τ)j(Nτc1)

−j(Nτc2)
−j

22N (Nc1)N (Nτc2)N

N
∑

j=0

1

(1 − τ)j
Lj(M

2
1 )Lj(M

2
2 ) , (4.19)

following the same steps as before but setting s = 0. The calculation simplifies in eq. (4.10)

so that the Qj’s become Laguerre polynomials. Indeed as a check we can take

lim
s→0

Qn(M2
2 ) =

(−)nn!

(1 − τ)n
Ln(M2

2 ) , (4.20)

where only the term L−1
n−k=0(−S2) = 1 contributes to the sum. This already indicates that

this last term in the sum is special.
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As a further independent check we may take the limit µ1, µ2 → 0 (⇒ τ → 0). In this

limit the two Dirac operators become equal, D1 = D2, and we should recover the known

one-matrix theory result [20]. Indeed, we get

lim
µ1, µ2→0

(−)n

n!
Qn(M2

2 ) =

n
∑

k=0

Lk(−Nm2
2)L

−1
n−k(−Ns2) (4.21)

=

n
∑

j=0

(−)jn!

(n− j)!(j!)2

j
∑

l=0

M2l
2 (−S2)j−l

(

j

l

)

= Ln

(

−N(m2
2 + s2)

)

,

i.e., Laguerre polynomials of shifted mass just as for the first flavour m′
1. This follows

from the first and last line of the definition eq. (4.13). Inserted into the kernel eq. (4.18)

we obtain the one-matrix theory result for the gap probability in terms of the partition

function of 2 flavours with shifted masses.

It is straightforward to see that for more flavours, N1 > 1 and N2 > 1, the very same

steps still go through (see also the corresponding determinant identity in appendix A). The

only difference is that there will be more rows with masses of flavour N1 in the determinant

eq. (4.15), and more masses of flavour N2 in the new polynomials Qj in eq. (4.12). The

absorption of the mass terms into a larger Vandermonde determinant leads to inverse

Vandermonde determinants in each of the N1 and N2 masses, which can be taken out of

the integral. We arrive at

E0,0(s, 0)∼
1

Z(Nf )
0 ∆N1

(m2
f1)∆N2

(m2
f2)

e−N2τc1s2

∫ ∞

0
dz1 . . . dzN e−N

PN
i=0 τc1zi (4.22)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂0(M
′ 2
f1=1) · · · L̂N+N1−1(M

′ 2
f1=1)

· · · · · · · · ·
L̂0(M

′ 2
N1

) · · · L̂N+N1−1(M
′ 2
N1

)

L̂0(Z1) · · · L̂N+N1−1(Z1)

· · · · · · · · ·
L̂0(ZN ) · · · L̂N+N1−1(ZN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q0(M
2
f2=1) · · · QN+N2−1(M

2
f2=1)

· · · · · · · · ·
Q0(M

2
N2

) · · · QN+N2−1(M
2
N2

)

L̂0(Z1) · · · L̂N+N2−1(Z1)

· · · · · · · · ·
L̂0(ZN ) · · · L̂N+N2−1(ZN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The orthogonality of Laguerre polynomials can be exploited in the manner of ref. [19]. This

leads to the following determinant expressions. For an equal number of flavours N1 = N2

we have4

E0,0(s, 0)=const.
1

Z(Nf )
0 ∆N1

({m2
f1})∆N2

({m2
f2})

e−N2τc1s2

det
1≤f1,f2≤N1

[

KN+N1−1(M
′2
f1,M

2
f2)
]

.

(4.23)

In the case whereN1(N2) is larger, the determinant is of sizeN1(N2) and contains additional

polynomials Lj(M ′ 2
j1 ) (Qj(M

2
k2)) to fill up the additional columns (rows) [19],

N1 > N2 : E0,0(s, 0) = const.
1

Z(Nf )
0 ∆N1

({m2
f1})∆N2

({m2
f2})

e−N2τc1s2

(4.24)

× det
f1,f2

[

KN+N2−1(M
′ 2
f1,M

2
f2=1) · · ·KN+N2−1(M

′ 2
f1,M

2
N2

)LN+N2
(M ′ 2

f1) · · ·LN+N1−1(M
′ 2
f1)
]

4We omit all mass dependent normalisation constants here that can be obtained easily. In particular

they will cancel the Vandermonde determinants of the masses, see e.g. [12] for the partition functions.
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where we display the f1-th row in mass M ′ 2
f1 of flavour N1, and

N2 > N1 : E0,0(s, 0) = const.
1

Z(Nf )
0 ∆N1

({m2
f1})∆N2

({m2
f2})

e−N2τc1s2

(4.25)

× det
f2,f1

[

KN+N1−1(M
2
f2,M

′ 2
f1=1) · · ·KN+N1−1(M

2
f2,M

′ 2
N1

)QN+N1
(M2

f2) · · ·QN+N2−1(M
2
f2)
]

Here we have transposed the matrix to display the f2-th row in mass M2
f2 of flavour N2.

For example, this includes in particular the interesting case of quenching the first

flavour (i.e. putting N1 = 0) while keeping its chemical potential nonzero, µ1 6= 0. This

quenched flavour can then be measured in the background of N2 = 2 flavours with masses

m1 and m2 ,

N2 = 2, N1 = 0 : E0,0(s, 0)=const.
e−N2τc1s2

Z(2)
0 (m2

2−m2
1)

det

[

QN (−Nτc2m2
1) QN+1(−Nτc2m2

1)

QN (−Nτc2m2
2) QN+1(−Nτc2m2

2)

]

.

(4.26)

In particular, setting the chemical potential of the dynamical flavours N2 to zero, µ2 = 0,

will not eliminate the other chemical potential µ1 6= 0 (see eq. (2.6)), or reduce to a known

one-matrix quantity. This non-trivial µ-dependence due to the valence quarks can serve as

a clean way to measure the pion decay constant Fπ from gauge field ensembles generated

with dynamical light quarks that carry no chemical potential.

Finally, as was pointed out earlier, the probability corresponding to non-vanishing

gauge field topology ν 6= 0 can be introduced by adding ν extra masses of D1, and then

taking them to be degenerate with value s2.

4.2 The large-N limit

In this subsection we take the large-N scaling limit by the same rescaling as in ref. [12], to

which we refer for more details. We first derive the limits of all building blocks needed for

the general case, and then specify the fully explicit result in three examples in subsequent

subsections.

All eigenvalues, the gap and the masses are rescaled in the same way (as would be

ŷ = 2Ny), the usual microscopic limit

x̂ ≡ 2Nx , ŝ ≡ 2Ns ,

m̂f ≡ 2Nmf , µ̂f ≡ 2Nµ2
f for f = 1, 2 ,

δ̂ ≡ µ̂2 − µ̂1 . (4.27)

All scalings including the chemical potential keeping Nµ2
f fixed can be read off from the

chiral Lagrangian eq. (2.1). For the various constants containing the µf this implies the

following scaling:

lim
N,j,k→∞

(1 − τ)−k = exp

[

1

2
rtδ̂2

]

where t ≡ j/N, r ≡ k/j ,

lim
N→∞

τcf = 1 for f = 1, 2 . (4.28)
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For the Laguerre polynomials the following scaling holds:

lim
N,j→∞

Lj(M
′ 2
1 = −Nτc1m′ 2

1 ) = I0(
√
t m̂′

1) , (4.29)

lim
N,j,k→∞

L−1
j−k 6=0(−S2 = −Nτc1s2) =

1

2j

√

t

(1 − r)
ŝ I1(

√

(1 − r)t ŝ),

recalling m̂
′ 2
1 = m̂2

1 + ŝ2. Special care has to be taken in the asymptotic of the new

polynomial,

lim
j→∞

(−)j

j!
Qj(M

2
2 =−Nτc2m2

2)=lim
j→∞

(

j−1
∑

k=0

1

(1−τ)kLk(M
2
2 ) L−1

j−k(−S2)+
1

(1−τ)j Lj(M
2
2 ) · 1

)

⇔ QS(m̂2; t)≡
1

2

∫ 1

0
dre

1

2
rtδ̂2

I0

(√
rtm̂2

)

√

t

1−r ŝI1
(

√

(1−r)tŝ
)

+ e
1

2
tδ̂2

I0

(√
t m̂2

)

. (4.30)

Here we have to split off the s-independent part L−1
0 = 1, which is the single term surviving

in the limit s → 0, and which hence ensures the normalisability of the probability in that

limit. Usually neglecting a single term when replacing a sum by an integral amounts to

removing a quantity of measure zero, which should be irrelevant. However, in our case

this is not true as the convergence in ŝ is not uniform. Therefore we have to treat that

term separately and find the “anomalous” I0-term in the scaling limit. That this procedure

is correct is checked by computing the normalisation before and after taking the large-N

limit. This curious phenomenon together with the appearance of Laguerre polynomials

L−1
j−k leads to our new microscopic kernel.

The final answer for the microscopic limit of the new kernel in eq. (4.18) thus reads

KS(m̂′
1, m̂2) ≡ lim

N→∞

1

N
KN+1(M

′ 2
1 ,M2

2 ) (4.31)

= 2

∫ 1

0
dTT 2I0(Tm̂

′
1)

∫ 1

0
dRR

1√
1 −R2

e
1

2
R2T 2δ̂2

I0(RTm̂2)ŝI1

(

ŝT
√

1−R2
)

+2

∫ 1

0
dTTe

1

2
T 2δ̂2

I0(Tm̂
′
1)I0(Tm̂2) ,

where we have changed to squared variables. This kernel can no longer be related to single

partition functions of shifted masses, as it was the case in the one-matrix theory [20].

Likewise we obtain for the normalisation constant which is proportional to the partition

function,

lim
N→∞

1

N

N
∑

j=0

1

(1 − τ)j
Lj(M

2
1 )Lj(M

2
2 ) = 2

∫ 1

0
dTT exp

[

1

2
T 2δ̂2

]

I0(Tm̂1)I0(Tm̂2) . (4.32)

Note that the first mass m̂1 is not shifted here, in contrast to the previous equation.

Partition functions of more flavours follow easily given the building blocks above, together

with the general expressions given in [19, 12]. We now have all ingredients to obtain all
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gap probabilities with any flavour content by inserting the asymptotic kernel eq. (4.31)

and asymptotic polynomials eqs. (4.29) and (4.30) into the respective eqs. (4.23) – (4.25),

normalised by the corresponding partition function.

In the following we give three simple examples that illustrate these very general expres-

sions. In order to guide the eye we mostly display the distribution of the first eigenvalues

versus the corresponding eigenvalue density it has to follow. For comparison to Lattice

results the gap probability that we give explicitly may be even more useful as it allows for

a binning independent comparison with data.

4.3 Two light flavours

Let us first consider the gap probability corresponding to two flavours N1 = N2 = 1, as

given in eq. (4.18). Collecting the formulae from above we obtain

lim
N→∞

E0,0(s, 0)≡E
(1+1)
S 0,0 (ŝ, 0)=

(
∫ 1

0
dTTe

1

2
T 2δ̂2

I0(Tm̂1)I0(Tm̂2)

)−1

exp

[

−1

4
ŝ2
]

×
(∫ 1

0
dTT 2I0(Tm̂

′
1)

∫ 1

0
dRR

1√
1−R2

e
1

2
R2T 2δ̂2

I0(RTm̂2)ŝ I1

(

ŝT
√

1−R2
)

+

∫ 1

0
dTTe

1

2
T 2δ̂2

I0(Tm̂
′
1)I0(Tm̂2)

)

. (4.33)

Once more we can perform an analytic check by taking δ̂ → 0 in order to go back to the

known one-matrix quantity [20]. Using the following so-called Sonine integral identity [21]

(that also follows from the large-N limit of identity eq. (4.21))

s

∫ 1

0
dx

x√
1 − x2

I0(mx)I1(s
√

1 − x2) + I0(m) = I0(
√

m2 + s2) , (4.34)

we obtain the known gap probability [20] as a ratio of a two-flavour partition function with

shifted masses over one with unshifted ones.5 As an illustration, we show the distribution

of the first eigenvalues p
Nf =1+1
S 1,0 (ŝ, 0) = −∂ŝE

Nf =1+1
S 0,0 (ŝ, 0) for different values of δ̂ and

compare it to the corresponding densities in figure 1. From [12] we have for the density

ρ
(1+1)
1,0 (x̂) = ρQ

1MM (x̂) − x̂

∫ 1
0 dttJ0(tx̂)I0(tm̂1)

∫ 1
0 dtt e

1

2
t2δ̂2

J0(tx̂)I0(tm̂2)
∫ 1
0 dtte

1

2
t2δ̂2

I0(tm̂1)I0(tm̂2)
, (4.35)

where we have introduced the one-matrix model quenched density ρQ
1MM (x̂) from eq. (4.37)

below.

At δ̂ = 0 eq. (4.35) coincides with the corresponding one-matrix model density

eq. (4.38) below. For δ̂ = 1 the curve is still close to this density, compare to figure 2.

For δ̂ ≫ 1 the curves approach the one-matrix quantities of one flavour N1 = 1 with mass

m̂1 = 3 (the flavour corresponding to the y-eigenvalues gets quenched), compare again to

figure 2 below. This fact can be seen analytically, by taking the limit δ̂ → ∞ in eq. (4.35)

5The remaining integral is elementary and gives a 2 × 2 determinant of Bessel functions.
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Figure 1: The eigenvalue density and first eigenvalue for Nf = 1 + 1 with imaginary chemical

potential δ̂ = 1 (low red), 3 (middle green), and 10 (upper blue curve), at fixed quark masses

m̂1 = 3, m̂2 = 4.

2 4 6 8 10
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0.4

0.5

Figure 2: The eigenvalue density and first eigenvalue of the one-matrix theory: two flavours with

m̂1 = 3, m̂2 = 4 (low red), one flavour with m̂1 = 3 (middle blue), and the quenched case (upper

black curve).

and doing a saddle point approximation,

lim
δ̂→∞

∫ 1

0
dtt e

1

2
t2δ̂2

J0(tx̂)I0(tm̂2) ∼ δ̂−2e
1

2
δ̂2

J0(x̂)I0(m̂2) . (4.36)

The δ̂-dependent integrals get replaced by their values at the upper limit t = 1, and we have

also computed the subleading coefficient for later convenience. After cancelling common

factors in eq. (4.35) we obtain, as we should, the one-matrix density for one flavour with

mass m̂1 as in eq. (4.40) below. We have checked that the same limit applies to the first

eigenvalue distribution.
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Figure 3: The eigenvalue density and first eigenvalue for Nf = 0 + 1 with imaginary chemical

potential δ̂ = 1 (low red), 3 (middle green), and 10 (upper blue curve) and fixed quark mass m̂1 = 3.

For the comparison above we give the following known one-matrix quantities [20, 22]

that are displayed in figure 2. The quenched density and its first eigenvalues read

ρQ
1MM (x̂) =

x̂

2

(

J0(x̂)
2 + J1(x̂)

2
)

, pQ
1MM (ŝ) =

1

2
ŝ e−

1

4
ŝ2

. (4.37)

The massive two-flavour density is given by

ρ
(2)
1MM (x̂) = ρQ

1MM (x̂) − x̂

∫ 1
0 dttJ0(tx̂)I0(tm̂1)

∫ 1
0 dttJ0(tx̂)I0(tm̂2)

∫ 1
0 dttI0(tm̂1)I0(tm̂2)

(4.38)

as well as its first eigenvalue distribution by

p
(2)
1MM (ŝ) =

1

2
ŝ e−

1

4
ŝ2 I2(m̂

′
1)m̂

′
2I3(m̂

′
2) − I2(m̂

′
2)m̂

′
1I3(m̂

′
1)

I0(m̂1)m̂2I1(m̂2) − I0(m̂2)m̂1I1(m̂1)
. (4.39)

Here primed masses are shifted according to m̂
′ 2
i ≡ m̂2

i + s2. We also need the one-flavour

density and its first eigenvalue

ρ
(1)
1MM (x̂) = ρQ

1MM (x̂) − x̂J0(x̂)

∫ 1
0 dttJ0(tx̂)I0(tm̂1)

I0(m̂1)
, (4.40)

p
(1)
1MM (ŝ) =

1

2
ŝ e−

1

4
ŝ2 I2(m̂

′ 2
1 )

I0(m̂1)
. (4.41)

4.4 Partial quenching

As another example we can consider the partially quenched gap probability eq. (4.26) with

N1 = 0 and one single (N2 = 1) flavour of mass m1,

E
(0+1)
S 0,0 (ŝ, 0) ≡ exp

[

−1

4
ŝ2 − 1

2
δ̂2
]

QS(m̂1; t = 1)

I0(m̂1)
, (4.42)
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Figure 4: The eigenvalue density and first eigenvalue for Nf = 0 + 2 with imaginary chemical

potential δ̂ = 1 (low red), 3 (middle green), and 10 (upper blue curve), at fixed quark masses of

flavour N2 m̂1 = 3, m̂2 = 4.

where the extra δ̂-dependent factor e−δ̂2/2 comes from the partition function Z(0+1)
0 that

normalises this gap probability. Its derivative is shown in figure 3 together with the corre-

sponding density [12]

ρ
(0+1)
1,0 (x̂) = ρQ

1MM (x̂) − exp

[

−1

2
δ̂2
]

x̂
J0(x̂)

I0(m̂1)

∫ 1

0
dTTe

1

2
T 2δ̂2

I0(Tm̂1)J0(T x̂) . (4.43)

Again we recover the one-matrix density eq. (4.40) when setting δ̂ = 0 in eq. (4.43). For

δ̂ = 1 the curve is still close to this one-flavour one-matrix result, see figure 2, and for

δ̂ ≫ 1 the curves approach the quenched one-matrix density. This can again be checked

analytically by taking δ̂ → ∞ of eq. (4.43) and using eq. (4.36). The exponentials cancel

but the prefactor 1/δ̂2 makes the second term in eq. (4.43) vanish, leading to the quenched

result. Again these limits δ̂ → 0 and δ̂ → ∞ can also be checked for the gap probability.

As the last and probably most physically relevant example we consider the partially

quenched case of N1 = 0 and N2 = 2 flavours with two possibly non-degenerate masses m̂1

and m̂2

E
(0+2)
S 0,0 (ŝ, 0) = exp

[

−1

4
ŝ2 − δ̂2

]

det





QS(m̂1; t = 1) ∂tQS(m̂1; t)
∣

∣

∣

t=1

QS(m̂2; t = 1) ∂tQS(m̂2; t)
∣

∣

∣

t=1





I0(m̂1)m̂2I1(m̂2) − I0(m̂2)m̂1I1(m̂1)
. (4.44)

When setting µ̂2 = 0 to have the sea quarks of flavour N2 free of chemical potential we

simply have δ̂ = −µ̂1 6= 0. The limit of equal masses can also be taken at the expense

of a further derivative within each determinant. As stressed before, this case should be

particularly useful for lattice gauge theory simulations, since it corresponds to ordinary

configurations without chemical potential.
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Figure 5: The integrated lowest eigenvalue distribution 1 − E0,0(s) for 1 + 1 flavours eq. (4.33)

(lower red) and 0 + 2 flavours eq. (4.44) (upper black curve), both at masses m̂1 = 3, m̂2 = 4 and

δ̂ = 3.

The comparison to the spectral density given by6

ρ
(0+2)
1,0 (x̂) = ρQ

1MM (x̂) − exp

[

−1

2
δ̂2
]

x̂
(

m̂1I1(m̂1)I0(m̂2) − m̂2I0(m̂1)I1(m̂2)
)−1

(4.45)

×
[
∫ 1

0
dtte

1

2
δ̂2t2J0(x̂t)I0(m̂1t)

(

− I0(m̂2)(x̂J1(x̂)+δ̂
2J0(x̂))−m̂2I1(m̂2)J0(x̂)

)

+

∫ 1

0
dtte

1

2
δ̂2t2J0(x̂t)I0(m̂2t)

(

I0(m̂1)(x̂J1(x̂)+δ̂
2J0(x̂))+m̂1I1(m̂1)J0(x̂)

)

]

,

is shown in figure 4. The one-matrix model result with two flavours is again recovered by

setting δ̂ = 0 given by eq. (4.38). For δ̂ = 1 the curve is close to the two-flavour one-matrix

result, see figure 2, and for δ̂ ≫ 1 the curves approach the quenched one-matrix quantities,

see figure 2. This matching can once more be checked analytically by taking δ̂ → ∞ of

eq. (4.45). Using eq. (4.36) as well as the cancellation of the two terms proportional to δ̂2

in the last two lines of eq. (4.45) leads again to a complete quenching of all flavours. The

same can be checked for the gap probability.

Finally we can also compare directly the gap probabilities in our two-matrix theory for

1+1 flavours and 0+2 partially quenched flavours, where in figure 5 we show 1−E0,0(s). For

δ̂ = 1 the difference is still small but it grows rapidly with increasing δ̂ since both theories

converge towards different limits for δ̂ → ∞ as was pointed out earlier. Equivalently this

results into the following comparison for the densities and first eigenvalue shown in figure 6.

It should be noted here that the quantity 1 − E0,0(s) is the integrated lowest eigenvalue

distribution, by some considered a convenient quantity for comparison with the lattice

gauge theory data.

We end this section by pointing out that there is no analogous computation of a µ-

dependent Dirac eigenvalue distribution in the fully quenched case. The mixed two-point

spectral correlation function has non-trivial µ-dependence [8] (and this dependence allows

for the determination of a quenched value of Fπ using this technique). But the one-point

6There is a term missing in the bottom right of the 3×3 matrix in the relevant formula eq. (3.53) of [12].
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Figure 6: The density and first eigenvalue for 1 + 1 flavours (right blue) vs. 0 + 2 flavours (left

black curve), both at masses m̂1 = 3, m̂2 = 4 and fixed δ̂ = 3.

function is µ-independent in chiral perturbation theory because it is generated by the

addition of just one valence quark; it is µ-independent to all orders in chiral perturbation

theory because the valence pions do not carry net baryon charge.

5. Conclusions and outlook

The two main results of this paper are the following. We have shown how individual

distributions of the lowest-lying eigenvalues of Dirac operators that are subjected to two

different external Abelian vector potentials (“imaginary chemical potential”) can be derived

from field theory. The results have been given in terms of generalised gap probabilities from

which the distributions can all be derived.

To compute the gap probabilities from field theory one needs to know spectral corre-

lation functions, all of which can be given a well-defined meaning in the field theoretical

setting. In particular, in the scaling region known as the ǫ-regime, these eigenvalue dis-

tributions can be derived from the corresponding effective theory, the chiral Lagrangian.

To make these computations concrete, we have used the equivalent Random Two-Matrix

Theory to derive the distribution of the lowest Dirac operator eigenvalue in the ǫ-regime

of QCD with imaginary chemical potential. As stressed in the introduction, these an-

alytical formulas may provide a very convenient way of determining simultaneously the

infinite-volume chiral condensate Σ and the pion decay constant Fπ by means of numerical

simulations in lattice gauge theory.

We have given explicit formulas for the lowest individual distribution in terms of a

new kernel, both in the case of full QCD with imaginary chemical potential, and for the

analogue of partially quenched QCD in which quarks are dynamical, but do not carry

chemical potential. Especially the latter may provide the most useful formulation in terms

of comparisons with numerical lattice data.
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A. A determinant identity

In this appendix we prove the following identity for any number of N2 flavours

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂ν
0(m1) . . . (1 − τ)−kL̂ν

k(m1) . . . (1 − τ)−(N+N2−1)L̂ν
N+N2−1(m1)

· · · · · · · · ·
L̂ν

0(mN2
) . . . (1 − τ)−kL̂ν

k(mN2
) . . . (1 − τ)−(N+N2−1)L̂ν

N+N2−1(mN2
)

L̂ν
0(x1) . . . L̂ν

k(x1) . . . L̂ν
N+N2−1(x1)

· · · · · · · · ·
L̂ν

0(xN ) . . . L̂ν
k(xN ) . . . L̂ν

N+N2−1(xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (A.1)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂ν
0(

m1

τ ) . . . τk(1 − τ)−kL̂ν
k(

m1

τ ) . . . τN+N2−1(1 − τ)−(N+N2−1)L̂ν
N+N2−1(

m1

τ )

· · · · · · · · ·
L̂ν

0(
mN2

τ ) . . . τk(1 − τ)−kL̂ν
k(

mN2

τ ) . . . τN+N2−1(1 − τ)−(N+N2−1)L̂ν
N+N2−1(

mN2

τ )

1 . . . xk
1 . . . xN+N2−1

1

· · · · · · · · ·
1 . . . xk

N . . . xN+N2−1
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Here we use the notation L̂ν
n(x) = xn + · · · for the Laguerre polynomials in monic normal-

isation

L̂ν
n(x) ≡ (−1)nn! Lν

n(x) =

n
∑

j=0

(−1)n+j n!(n+ ν)!

(n− j)!(ν + j)!j!
xj . (A.2)

For simplicity we will prove the identity for one flavour N2 = 1 first, by induction in

N . For N = 1 we have that
∣

∣

∣

∣

∣

L̂ν
0(m) 1

1−τ L̂
ν
1(m)

L̂ν
0(x) L̂ν

1(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 1
1−τ (m− ν − 1)

1 x− ν − 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 τ
1−τ (m

τ − ν − 1)

1 x

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

L̂ν
0(

m
τ ) 1

1−τ L̂
ν
1(

m
τ )

1 x

∣

∣

∣

∣

∣

,

(A.3)

by adding ν+1 times the first column to the second column. Next we do the induction step,

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂ν
0(m) . . . (1 − τ)−kL̂ν

k(m) . . . (1 − τ)−(N+1)L̂ν
N+1(m)

L̂ν
0(x1) . . . L̂ν

k(x1) . . . L̂ν
N+1(x1)

· · · · · · · · ·
L̂ν

0(xN ) . . . L̂ν
k(xN ) . . . L̂ν

N+1(xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (A.4)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂ν
0(

m
τ ) . . . τk(1 − τ)−kL̂ν

k(
m
τ ) . . . τN (1 − τ)−N L̂ν

N (m
τ ) (1 − τ)−(N+1)L̂ν

N+1(m)

1 . . . xk
1 . . . xN

1 L̂ν
N+1(x1)

· · · · · · · · · · · ·
1 . . . xk

N . . . xN
N L̂ν

N+1(xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Here we have expanded with respect to the last column and used the induction assumption

for N , as well as the fact that the sub-determinant containing only x-variables of monic

Laguerre polynomials can be replaced by the Vandermonde determinant.

To get monic powers in the last column (except in the first element) we subsequently

subtract multiples of columns from the left, using eq. (A.2), and we obtain
∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂ν
0(

m
τ ) . . . τk(1 − τ)−kL̂ν

k(
m
τ ) . . . τN (1 − τ)−N L̂ν

N (m
τ ) P (m)

1 . . . xk
1 . . . xN

1 xN+1
1

· · · · · · · · · · · ·
1 . . . xk

N . . . xN
N xN+1

N

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (A.5)

The first element in the last column now reads

P (m) = (1− τ)−(N+1)L̂ν
N+1(m)−

N
∑

j=0

(−1)N+1+j (N + 1)!(N + 1 + ν)!

(N + 1 − j)!(ν + j)!j!

τ j

(1 − τ)j
L̂ν

j

(m

τ

)

.

(A.6)

As a last step we need to show that P (m) = τN+1(1 − τ)−(N+1)L̂ν
N+1(

m
τ ). This relation

holds due to the following identity [23], which can be easily proven by induction. It is

expressed in terms of usual non-monic Laguerre polynomials

Lν
N+1(m) =

N+1
∑

j=0

(N + 1 + ν)!

(N + 1 − j)!(ν + j)!
τ j(1 − τ)N+1−jLν

j

(m

τ

)

, (A.7)

which finishes the first part of our proof. As a remark which is useful for the main text

this identity is usually quoted as [23]

Lν
n(zw) =

n
∑

j=0

(n+ ν)!

(n− j)!(ν + j)!
wj(1 − w)n−jLν

j (z) . (A.8)

In the above it was not essential in the manipulation of columns that we had one mass

flavour N2 = 1 only. We can in fact do an inductive proof in the column number k for any

N2 and N ,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂ν
0(m1) . . . (1 − τ)−kL̂ν

k(m1) . . . (1 − τ)−(N+N2−1)L̂ν
N+N2−1(m1)

· · · · · · · · ·
L̂ν

0(mN2
) . . . (1 − τ)−kL̂ν

k(mN2
) . . . (1 − τ)−(N+N2−1)L̂ν

N+N2−1(mN2
)

L̂ν
0(x1) . . . L̂ν

k(x1) . . . L̂ν
N+N2−1(x1)

· · · · · · · · ·
L̂ν

0(xN ) . . . L̂ν
k(xN ) . . . L̂ν

N+N2−1(xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (A.9)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L̂ν
0(

m1

τ ) . . . τk

(1−τ)k L̂
ν
k(

m1

τ ) 1
(1−τ)k+1 L̂

ν
k+1(m1) . . . 1

(1−τ)N+N2−1 L̂
ν
N+N2−1(m1)

· · · · · · · · · · · ·
L̂ν

0(
mN2

τ ) . . . τk

(1−τ)k L̂
ν
k(

mN2

τ ) 1
(1−τ)k+1 L̂

ν
k+1(mN2

) . . . 1
(1−τ)N+N2−1 L̂

ν
N+N2−1(mN2

)

1 . . . xk
1 L̂ν

k+1(x1) . . . L̂ν
N+N2−1(x1)

· · · · · · · · · · · ·
1 . . . xk

N L̂ν
k+1(xN ) . . . L̂ν

N+N2−1(xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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The start for k = 1 is trivially true in analogy to eq. (A.3). The induction step from k to

k+ 1 easily follows by subtracting the left columns for l ≤ k from column k+ 1, and using

again eq. (A.7) for N + 1 → k + 1. Putting k = N +N2 ends the proof.

B. An identity for Laguerre polynomials

The relation we show here is given in eq. (4.14),

L−1
m (x) =

m
∑

j=0

(−)j
(

j + k

k

)

Lj+k
m−j(x) , (B.1)

where the right hand side is independent of k. It follows from a known identity eq.

(4.4.1.14) in [21]

1

(β)m
Lα+β−1

m (x) =
m
∑

i=0

1

(m− i)!(β)i
Lα−i

i (x) . (B.2)

Here (β)m is the Pochhammer symbol. In choosing α = −β we obtain

(−)m(α−m)!

α!
L−1

m (x) =

m
∑

i=0

(−)i(α− i)!

(m− i)!α!
Lα−i

i (x) .

=
m
∑

j=0

(−)m−j(α−m+ j)!

j!α!
Lα−m+j

m−j (x) . (B.3)

In the second step we have changed summation from i to j = m − i. Finally choosing

α = m+ k we obtain eq. (B.1) above.
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